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background that interpolates between pulsating strings and single-spike strings. They are
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space coordinates, which maps rotating/spinning string states with large spins to oscillating

states with large winding numbers. From a finite-gap perspective, this transformation is

realised as an interchange of quasi-momentum and quasi-energy defined for the algebraic

curve. The gauge theory duals are also discussed, and are identified with operators in the

non-holomorphic sector of N = 4 super Yang-Mills. They can be viewed as excited states

above the “antiferromagnetic” state, which is “as far from BPS as possible” in the spin-

chain spectrum. Furthermore, we investigate helical strings on AdS3 × S1 in an appendix.
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1. Introduction

The AdS/CFT correspondence [1] claims the type IIB string theory on AdS5 × S5 is a

dual description of the four-dimensional, N = 4 super Yang-Mills (SYM) theory. One

of the predictions of the AdS/CFT is the exact matching of the spectra on both sides,

namely the conformal dimensions of SYM operators with the energies of string states. In

the large -N limit, these charges are supposed to be interpolated by some function of the ’t

Hooft coupling λ , but the strong/weak nature of the AdS/CFT usually prevents us from

direct comparison of the spectra.

Nevertheless, there has been considerable progress in matching the spectra recently,

based on the integrable structures of both theories. They are captured by Bethe ansatz

equations, which were was first applied to the gauge theory side in the pioneering work

of [2]. Despite the fact that we are lacking the knowledge of perturbative computations

for higher loop orders in λ even for rather simple rank-one sectors, an all-order asymptotic
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Bethe ansatz equation was proposed by assuming all-order integrability as well as making

use of some sophisticated guesses [3 – 6]. There has been increasing evidence and positive

support for the conjectured Bethe ansatz equation [7 – 13], and significant progress has been

achieved in formulating the exact AdS/CFT Bethe ansatz equation valid for all regions of

λ .

Many tests of the AdS/CFT conjecture in the large-N limit have taken place in the

limit where a U(1)R -charge J1 and conformal dimensions ∆ of the SYM operators become

very large. The BMN limit [14] is one such well-established limit. This limit is defined by

sending λ to infinity while keeping λ′ ≡ λ/J2 fixed, where J = J1+number of “impurities”.

In [15], a different large-spin limit was considered to serve as a new playground for

the AdS/CFT. In this limit, both J1 and ∆ go to infinity while the difference ∆ − J1

and the coupling λ are kept finite. The worldsheet quantum corrections drop out in this

limit, which simplifies the comparison of both spectra considerably. Giant magnons are

string solutions living in this sector, which have an infinite spin along one of great circles

of S5 . They are open objects, and the angular difference between the two endpoints on

the equator, which is equal to the localized worldsheet momentum, is identified with the

momentum of an excitation in the asymptotic SYM spin-chain.

Giant magnons were generalized to the two-spin case in [16] which carry an additional

(finite) second spin J2 , and are know as dyonic giant magnons. In static gauge, the string

equations of motion are essentially those of a bosonic O(4) sigma model supplemented

by the Virasoro constraints, which is classically equivalent to the Complex sine-Gordon

(CsG) system. Thus by using the Pohlmeyer-Lund-Regge (PLR) reduction procedure, the

dyonic giant magnon can be constructed as the counterpart of a kink soliton solution of

the CsG equation. In this connection, an “elementary” giant magnon of [15] corresponds

to a kink soliton of the sine-Gordon (sG) equation. The SYM dual of the dyonic giant

magnon is a magnon boundstate in the asymptotic spin-chain [17, 18], where the number

of constituent magnons corresponds to the second spin J2 of the string. It was shown that,

in the large -λ limit, the conjectured AdS/CFT S-matrix for boundstates precisely agree

with the semiclassical S-matrix for scattering of dyonic giant magnons under an appropriate

choice of gauge [19]. For further literature on giant magnons, see [22, 28, 29] (See also [23 –

27]). The idea of exploiting the relation between the classical CsG system and the O(4)

string sigma model was further utilized to construct more general classical strings, which

are called helical strings [28]. They are the most general “elliptic” classical string solutions

on R × S3 that interpolate between two-spin folded/circular strings [30] and dyonic giant

magnons.

In the algebro-geometric approach to the string equations of motion, these classi-

cal string solutions were studied as finite-gap solutions. This line of approach stemmed

from the work [31], and has provided many important implications and applications in

testing/formulating the conjectured AdS/CFT S-matrix, including the quantum correc-

tion [32, 33]. In this formalism, every string solution is characterized by a spectral curve

endowed with an Abelian integral called quasimomentum. Recently helical strings were

also reconstructed in this framework [34] (see also [35]). It enabled us, in particular, to

understand how folded/circular strings and dyonic giant magnons interpolate from the
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standpoint of algebraic curves.

In this paper, we investigate classical strings on an R × S3 subspace of AdS5 × S5

with large winding numbers, rather than large spins. The recently found single-spike

solution of [36, 37] also falls into this category. In conformal gauge, they are obtained by

performing a transformation τ ↔ σ of large spin states, i.e., interchanging worldsheet time

and space of coordinates. Throughout this paper, we will refer to this transformation as

the “τ ↔ σ transformation”, or just “2D transformation”. This kind of “2D duality” is

well-known in the context of rotating strings and pulsating string solutions, both of which

are characterized by the same special Neumann-Rosochatius integrable system [38, 39].

For example, if we write the embedding coordinates of S3 ⊂ R
4 as ξj = rj(τ, σ) eiϕj(τ,σ)

(j = 1, 2) with sigma model constraint
∑2

j=1 |ξj |2 = 1 , the rotating strings are obtained

from the ansatz rj = rj(σ) and ϕj = wjτ + αj(σ) with wj playing the role of angular

velocities, while pulsating strings follow from the ansatz rj = rj(τ) and ϕj = mjσ + αj(τ)

with mj now representing the integer winding numbers. It is reminiscent of T-duality

that the angular momenta (spins) and winding numbers are interchanged, however, one

should also take notice that not only the angular part ϕj but also the radial part rj are

transformed in our case. To summarize, there are two consequences of this τ ↔ σ map:

• Large spin states become large winding states.

• Rotating/spinning states become oscillating states.

We will see these features for the case of 2D-transformed helical strings, and see how

they interpolate between particular pulsating strings (τ ↔ σ transformed folded/circular

strings) and the single-spike strings (τ ↔ σ transformed dyonic giant magnons).

It will be also shown that the two classes of string solutions — rotating/spinning with

large-spins on the one hand, and oscillating strings with large windings on the other —

correspond to two equivalence classes of representations of a generic algebraic curve with

two cuts. The τ ↔ σ operation turns out to correspond to rearranging the configuration of

cuts with respect to two singular points on the real axis of the spectral parameter plane.1

Concerning the string/spin-chain correspondence of AdS/CFT, we will claim that the

dual operators of large-winding oscillating strings are only found in a non-holomorphic

sector. Such a non-holomorphic sector has been much less explored than the holomorphic,

large-spin sectors, because of its intractability mainly related with the non-closedness,

or difficulty of perturbative computations. Nevertheless, since our results, together with

the previous works [28, 34], seem to complete the whole catalog of classical, elliptic

strings on R × S3 , we hope they could shed more light not only on holomorphic but

also non-holomorphic sectors of the string/spin-chain duality, for a deeper understanding

of AdS/CFT. As a first step, in section 5, we will identify the gauge theory duals of the

2D transformed strings.

This paper is organized as follows. In section 2, we briefly review the reduction of

classical strings on R × S3 to the CsG system, and see the relation between helical strings

1An alternative description of τ ↔ σ operation is to swap the definition of quasi-momentum and so-called

quasi-energy. We will make this point clear later in section 4.
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of [28] and their 2D transformed version from the CsG point of view. In section 3, we study

2D transformed versions of the type (i) and type (ii) strings. These new helical strings are

interpreted as finite-gap solutions in section 4. In section 5, we discuss the gauge theory

interpretation of the 2D transformed helical strings, and interpret them as excitations

above the “antiferromagnetic” state of the SO(6) spin-chain. section 6 is devoted to a

summary and discussions. In appendix A, we present similar helical solutions on AdS3×S1 .

Some computational details useful in discussing the infinite-winding limit can be found in

appendix B.

2. 2D-transforming classical strings on R × S3

We start with a brief review on how classical strings on R × S3 are related to CsG system

via the Pohlmeyer-Lund-Regge (PLR) reduction procedure [40], by summarizing the facts

in [28].2 Then we see how the τ ↔ σ operation acts on the map.

Let us write the metric on R × S3 as

ds2
R×S3 = −dη2

0 + |dξ1|2 + |dξ2|2 . (2.1)

Here η0 is the AdS time, and the complex coordinates ξj (j = 1, 2) are defined by the

embedding coordinates XM=1,...,4 of S3 ⊂ R
4 as

ξ1 = X1 + iX2 = cos θ eiϕ1 and ξ2 = X3 + iX4 = sin θ eiϕ2 . (2.2)

We set the radius of S3 to unity so that
∑4

M=1 X2
M =

∑2
j=1 |ξj |2 = 1 . The Polyakov action

for a string which stays at the center of the AdS5 and rotating on S3 takes the form,

SR×S3 = −
√

λ

2

∫
dτ

∫
dσ

2π

{
γab

[
− ∂aη0 ∂bη0 + ∂a

~ξ · ∂b
~ξ∗

]
+ Λ(|~ξ|2 − 1)

}
, (2.3)

where we used the AdS/CFT relation α′ = 1/
√

λ , and Λ is a Lagrange multiplier. We

take the standard conformal gauge, γττ = −1 , γσσ = 1 and γστ = γτσ = 0 . Denoting

the energy-momentum tensor which follows from the action (2.3) as Tab , the Virasoro

constraints are imposed as

0 = Tσσ = Tττ = −1

2
(∂τη0)

2 − 1

2
(∂ση0)

2 +
1

2
|∂τ

~ξ|2 +
1

2
|∂σ

~ξ|2 ,

and 0 = Tτσ = Tστ = Re
(
∂τ

~ξ · ∂σ
~ξ∗

)
.

(2.4)

The equations of motion that follow from (2.3) are

∂a∂
aη0 = 0 and ∂a∂

a~ξ + (∂a
~ξ · ∂ a~ξ∗)~ξ = ~0 . (2.5)

It is well-known that the O(4) (resp. O(3)) string sigma model in conformal gauge

is classically equivalent to Complex sine-Gordon (resp. sine-Gordon) model with Virasoro

constraints [40] (see also [41]). The CsG system is defined by the Lagrangian

LCsG =
∂aψ

∗ ∂aψ

1 − ψ∗ψ
+ ψ∗ψ . (2.6)

2The notation used in this section basically follows from [28].
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The equation of motion (Complex sine-Gordon equation) which follows from (2.6) is

∂a∂
aψ + ψ∗ (∂aψ)2

1 − ψ∗ψ
− ψ (1 − ψ∗ψ) = 0 . (2.7)

The PLR reduction relates the potential term ∂a
~ξ · ∂ a~ξ∗ with a solution of CsG equation

ψ ≡ sin (φ/2) exp (iχ/2) , as

∂a
~ξ · ∂ a~ξ∗ = cos φ , (2.8)

and for each φ , one can obtain a consistent classical string solution by solving a Schrödinger

type differential equation under appropriate boundary conditions.3 For example, let us

consider a kink soliton solution of CsG equation,

ψ(t, x) =
cos α

cosh(xv cos α)
exp (itv sin α) , (2.9)

where (tv, xv) are Lorentz-boosted coordinates

tv ≡ t − vx√
1 − v2

, xv ≡ x − vt√
1 − v2

. (2.10)

Plugging (2.9) into (2.8), and imposing the boundary condition

ξ1 → exp (it ± ∆ϕ1/2) , ξ2 → 0, (as x → ±∞) , (2.11)

one reaches a dyonic giant magnon [16]. In this case, the angular difference of two endpoints

of the string ∆ϕ1 is determined through the CsG kink parameters α and v .

We are interested in how the 2D transformation acts on the dictionary. Let us first

look at the string equations of motion (2.5) and the Virasoro constraints (2.4). In view that

they are invariant under the τ ↔ σ flip, any string solution is mapped to another solution

under this map. On closer inspection of the Virasoro constraints (2.4), one actually finds

that the τ ↔ σ operation can be applied independently to the R ⊂ AdS5 and S3 ⊂ S5

parts. We will use this observation to generate new string solutions from known solutions

on R × S3 , by transforming only the S3 part while retaining the gauge t ∝ τ . In order

to satisfy other consistency conditions such as closedness of the string, one needs to care

about the periodicity in the new σ direction (that used to be the τ direction before the

flip).

Before discussing the CsG counterparts of such τ ↔ σ transformed string solutions,

it would be useful to review some relevant aspects of the (C)sG ↔ string correspondence

before the transformation. A good starting point is the single-spin helical string constructed

in [28]. It is a family of classical string on R×S2 that interpolates between a folded/circular

string of [42] and a giant magnon. From the standpoint of sG theory, the helical string

corresponds to the following helical wave (“kink-train”) solution of sG equation,

φ(t, x) = 2 arcsin

[
cn

(
(x − x0) − v(t − t0)

k
√

1 − v2
, k

)]
. (2.12)

3One can also trace back the PLR reduction procedure to obtain CsG solutions from classical string

solutions.
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via the PLR procedure. The single-spin helical string thus has two controllable parameters

derived from the sG soliton (2.12) ; one is the soliton velocity v and the other is the elliptic

moduli parameter k that controls the period of the kink-array. In the k → 1 limit, it

reduces to an array of giant magnons, while as v → 0 , it reduces to a folded/circular string

of [42].

Actually there is another periodic solution of sG equation, namely a periodic instanton.

Generally, one can interpret a static, finite energy classical solution of sG theory in (1+1) -

dimensions as a finite action Euclidean solution in (1 + 0) -dimension that interpolates

between different vacua of the theory. Such a sG instanton solution is known in the

literature (see, e.g., [43]) and is given by

φ(t′) = 2 arcsin

[
cn

(
t′ − t′0

k
, k

)]
. (2.13)

Here t′ = it is the Euclidean time. One can see that a static kink soliton of sG equation

−∂2
xφ = sin φ (set v = 0 in (2.12)) is related to the instanton (2.13) of the Euclidean

sG equation ∂2
itφ = −∂2

t′φ = sin φ by a formal translation x ↔ t′ (i.e., space-like motion

turns into “time-like” motion), which amounts to swapping worldsheet variables τ ↔ σ .

Starting from the instanton solution (2.13) , and boosting it by a parameter v , we obtain

a one parameter family of sG solutions of the form

φ(t′, x′) = 2 arcsin

[
cn

(
(t′ − t′0) − v(x′ − x′

0)

k
√

1 − v2
, k

)]
(2.14)

with (t′, x′) = (it, ix) , which is related to the sG helical wave (2.12) by τ ↔ σ .

Via the PLR map, each periodic instanton corresponds to a point-like segment, or

“string-bit”, and an infinite series of such periodic sG instantons (2.13) arrayed in the

σ-direction make up the corresponding classical string. Note that for the boosted instan-

ton (2.14), v no longer represents a velocity, rather it should be viewed as a parameter that

controls the difference between time-origins t′0 for each bits. A pulsating string corresponds

to the v = 0 case, when the timing of the pulsation of each string-bits is perfectly right.

When the pulsation timing of the bits is off in a coherent manner, a symmetric “spike”

comes into being, reflecting the staggered motions of bits.4 In the limit k → 1 , the oscil-

lation period of each bit becomes infinite, and the bits stay in the vicinity of the equator

for an infinite amount of time, except during a short sudden jump away from the equator

— this is one way to interpret the single-spin single-spike string of [36] from the sG point

of view.5

We have just discussed the way to realise the oscillating solutions resulting from a

τ ↔ σ transformation in terms of a collection of sG instantons. We gave this interpretation

4The situation is much the same as the case of familiar transverse waves, where oscillation in the medium

takes place in a perpendicular direction to its own motion. This direction of motion corresponds to, in our

case, the circumferential direction along the equator of the sphere.
5As is noticed in [36], for sG case, it is also possible to argue that the τ ↔ σ transformation results in

the change of sG kink soliton from φ = 2arcsin (1/ cosh xv) to φ = 2 arcsin (tanh xv) . However, it seems

this interpretation cannot be directly applied to CsG case.
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because it is very intuitive. Actually one cannot generalise this argument to the CsG case

directly, since in this case the argument requires χ to be imaginary. So for the CsG case, it

would be convenient instead to interpret the effect of the τ ↔ σ operation as flipping the

sign of the “mass” term in the Lagrangian as

LCsG =
∂aψ

∗ ∂aψ

1 − ψ∗ψ
+ ψ∗ψ 7→ ∂aψ

∗ ∂aψ

1 − ψ∗ψ
− ψ∗ψ .

In this way one can easily understand how one solution of CsG is related to another via

the τ ↔ σ transformation (keeping φ and χ real).

Notice also, as in the soliton cases, that there are two classes of “boosted” instantons

possible; the first is an instanton that oscillates about one of the barriers of the periodic

potential with fixed finite oscillation range, while the other no longer oscillates back and

forth but goes on from one barrier to the neighboring one. A similar kind of distinction

exists for what we call type (i)′ and type (ii)′ strings.

3. Helical oscillating strings

We are now in a position to discuss the 2D transformed helical strings. We first study the

type (i)′ case in the following section 3.1. The results on the type (ii)′ solutions will be

collected in section 3.2.

3.1 Type (i)′ helical strings

For the reader’s convenience, let us display the profile of the two-spin helical string obtained

in [28],6

ηorig
0 = aT + bX , (3.1)

ξorig
1 = C

Θ0(0)√
k Θ0(iω1)

Θ1(X − iω1)

Θ0(X)
exp

(
Z0(iω1)X + iu1T

)
, (3.2)

ξorig
2 = C

Θ0(0)√
k Θ2(iω2)

Θ3(X − iω2)

Θ0(X)
exp

(
Z2(iω2)X + iu2T

)
, (3.3)

where ω1 and ω2 are real parameters, k is the elliptic modulus, and C is the normalization

constant given by

C =

(
dn2(iω2)

k2 cn2(iω2)
− sn2(iω1)

)−1/2

. (3.4)

The coordinates (T,X) are defined by

T =
τ̃ − vσ̃√
1 − v2

, X =
σ̃ − vτ̃√
1 − v2

, (τ̃ , σ̃) ≡ (µτ, µσ) (3.5)

6Throughout this paper, we often omit the elliptic moduli k from expressions of elliptic functions. For

example, we will often write Θν(z) or K instead of Θν(z, k) or K(k) .
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with µ constant. Starting from (3.1)–(3.3), by swapping τ and σ in ξi(τ, σ) (i = 1, 2) while

keeping the relation η0(τ, σ) = aT + bX as it is, one obtains the 2D-transformed version of

the type (i) two-spin helical strings, which we call type (i)′ helical strings,

ξ1 = C
Θ0(0)√

k Θ0(iω1)

Θ1(T − iω1)

Θ0(T )
exp

(
Z0(iω1)T + iu1X

)
, (3.6)

ξ2 = C
Θ0(0)√

k Θ2(iω2)

Θ3(T − iω2)

Θ0(T )
exp

(
Z2(iω2)T + iu2X

)
. (3.7)

The Virasoro constraints (2.4) fix the parameters a and b in (3.1),

a2 + b2 = k2 − 2k2 sn2(iω1) − U + 2u2
2 , (3.8)

ab = −i C2

(
u1 sn(iω1) cn(iω1) dn(iω1) − u2

1 − k2

k2

sn(iω2) dn(iω2)

cn3(iω2)

)
. (3.9)

We can adjust the parameter v such that the AdS time is proportional to the worldsheet

time variable, namely η0 =
√

a2 − b2 τ̃ with v ≡ b/a ≤ 1 . The PLR reduction relation (2.8)

becomes
1

µ2

2∑

i=1

(
|∂σξi|2 − |∂τξi|2

)
= −k2 + 2k2 sn2(T ) + U , (3.10)

which imposes the following constraints among the parameters

u2
1 = U + dn2(iω1) , u2

2 = U − (1 − k2) sn2(iω2)

cn2(iω2)
. (3.11)

We are interested in closed string solutions, which means we need to consider the periodicity

conditions. The period in σ -direction is defined such that it leaves the theta functions

in (3.2) and (3.3) invariant, namely it is given by

−ℓ ≤ σ ≤ ℓ, ℓ =
K
√

1 − v2

vµ
, (v > 0) . (3.12)

Then, closedness of the string requires

∆σ ≡ 2π

n
=

2K
√

1 − v2

vµ
, (3.13)

∆ϕ1 ≡ 2πN1

n
= 2K

(u1

v
+ iZ0(iω1)

)
+ (2n′

1 + 1)π , (3.14)

∆ϕ2 ≡ 2πN2

n
= 2K

(u2

v
+ iZ2(iω2)

)
+ 2n′

2π , (3.15)

where n = 1, 2, . . . counts the number of periods in 0 ≤ σ ≤ 2π , and N1,2 are the wind-

ing numbers in ϕ1,2-directions respectively. The integers n′
1,2 specify the ranges of ω1,2

respectively (the shifts ωi 7→ ωi + 2K′ correspond to n′
i 7→ n′

i + 1).

The energy E = (
√

λ/π) E and spins Ji = (
√

λ/π)Ji (i = 1, 2) of the string with n

periods are obtained from the usual definitions

E =

∫ nℓ

−nℓ
dσ ∂τη0 , Ji =

1

2

∫ nℓ

−nℓ
dσ Im (ξ∗i ∂τξi) , (3.16)
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Figure 1: Type (i)′ helical string (k = 0.68 , n = 6) , projected onto S2 . The figure shows a single-

spin case (u2 = ω2 = 0) . The (red) circle indicates the θ = 0 line (referred to as the “equator” in

the main text).

which yield in the present case,

E =
na(1 − v2)

v
K =

n(a2 − b2)

b
K , (3.17)

J1 =
nC2 u1

k2

[
E −

(
dn2(iω1) +

ik2

vu1
sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (3.18)

J2 =
nC2 u2

k2

[
−E− (1 − k2)

(
sn2(iω2)

cn2(iω2)
− i

vu2

sn(iω2) dn(iω2)

cn3(iω2)

)
K

]
. (3.19)

It is meaningful to compare the above expressions with the ones for the original type (i)

helical strings of [28],

Eorig = na
(
1 − v2

)
K =

n(a2 − b2)

a
K , (3.20)

J orig
1 =

nC2 u1

k2

[
−E +

(
dn2(iω1) +

ivk2

u1
sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (3.21)

J orig
2 =

nC2 u2

k2

[
E + (1 − k2)

(
sn2(iω2)

cn2(iω2)
− iv

u2

sn(iω2) dn(iω2)

cn3(iω2)

)
K

]
. (3.22)

If we regard E and Ji as functions of v = b/a, the global charges of the transformed solu-

tions are related to the original ones by E(a, b) = −Eorig(b, a) and Ji(v) = −J orig
i (−1/v) .

Similar relations are also true for the winding numbers given in (3.14) and (3.15),

Ni(v) = −Norig
i (−1/v) (i = 1, 2) . They are just a consequence of the symmetry a ↔ b the

Virasoro constraints possess. For example, if (a, b) = (a0, b0) solves (3.8) and (3.9), then

(a, b) = (b0, a0) gives another solution.

Notice that in the limit v → 0 (ω1,2 → 0) , all the winding numbers in (3.13)-(3.15)

become divergent (and so ill-defined), due to the fact that the θ defined in (2.2) becomes

independent of σ . Therefore, in this limiting case, we may choose µ arbitrarily without

the need of solving (3.13), provided that N1 and N2 are both integers.

The type (i)′ helical strings contains both pulsating strings and single-spike strings in

particular limits.
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ω1,2 → 0 limit: pulsating strings. Let us first consider the ω1,2 → 0 limit. In this

limit, the boosted coordinates (3.5) reduce to (T,X) → (τ̃ , σ̃) , and (3.1), (3.6)–(3.7) be-

come

η0 =
√

k2 + u2
2 τ̃ , ξ1 = k sn(τ̃ , k) eiu1σ̃ , ξ2 = dn(τ̃ , k) eiu2σ̃ , (3.23)

with the constraint u2
1 − u2

2 = 1 . Since the radial direction is independent of σ , we may

treat µ as a free parameter satisfying N1 = µu1 and N2 = µu2 . Then the conserved charges

for a period become

E = πk

√
N2

1 +

(
1

k2
− 1

)
N2

2 , J1 = J2 = 0 . (3.24)

Left of figure 2 shows the time evolution of the type (i)′ pulsating string. It stays above

the equator, and sweeps back and forth between the pole (θ = π
2 ) and the turning latitude

determined by k .

When we set u2 = 0 , this string becomes identical to the simplest pulsating solution

studied in [44] (the zero-rotation limit of rotating and pulsating strings studied in [45, 46]).7

k → 1 limit: single-spike strings. When the moduli parameter k goes to unity, type

(i)′ helical string becomes an array of single-spike strings studied in [36, 37]. Dependence

on ω2 drops out in this limit, so we write ω instead ω1 . The Virasoro constraints can be

explicitly solved by setting a = u1 and b = tan ω . The profile of the string then becomes

η0 =
√

1 + u2
2 τ̃ , ξ1 =

sinh(T − iω)

cosh(T )
ei tan(ω)T+iu1X , ξ2 =

cos(ω)

cosh(T )
eiu2X . (3.25)

with the constraint u2
1 − u2

2 = 1 + tan2 ω .8 The conserved charges are computed as

E =

(
u2

1 − tan2 ω

tan ω

)
K(1) , J1 = u1 cos2 ω , J2 = u2 cos2 ω , (3.26)

where K(1) is a divergent constant. For n = 1 case (single spike), the expressions (3.26)

result in

J1 =
√

J 2
2 + cos2 ω , i.e., J1 =

√
J2

2 +
λ

π2
cos2 ω . (3.27)

Since the winding number ∆ϕ1 also diverges as k → 1, this limit can be referred to

as the “infinite winding” limit,9 which can be viewed as the 2D-transformed version of the

infinite spin limit of [15]. By examining the periodicity condition carefully, one finds that

7The type (i)′ pulsating solution studied here and also the type (ii)′ pulsating string discussed later are

qualitatively different solutions from the so called “rotating pulsating string” [45], so that the finite-gap

interpretation and the gauge theory interpretation of type (i)′ and (ii)′ are also different from those of [45].
8Here u1,2 and ω are related to γ used in [36] (see their eq. (6.23)) by u1 = 1

cos γ cos ω
and u2 = tan γ

cos ω
.

9Notice, however, that the string wraps very close to the equator but touches it only once every period

(every “cusp”).
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Figure 2: In the ω1,2 → 0 limit, type (i)′ (Left figure) and type (ii)′ (Right figure) helical strings

reduce to different types of pulsating strings. Their behaviors are different in that the type (i)′

sweeps back and forth only in the top hemisphere with turning latitude controlled by the elliptic

modulus, while the type (ii)′ pulsates on the entire sphere, see section 3.2. For the type (ii)′ case,

we only showed half of the oscillation period (for the other half, it sweeps back from the south pole

to the north pole).

both of the divergences come from the same factor K(k)|k→1. Using the formula (B.6),

one can deduce that

E − ∆ϕ1

2

∣∣∣∣
k→1

= −
(

ω − (2n′
1 + 1) π

2

)
≡ θ̄ . (3.28)

Using the θ̄ variable introduced above, which is the same definition as used in [36], one can

see (3.27) precisely reproduces the relation between spins obtained in [36].

Let us comment on a subtly about v → 0 (or equivalently ω → 0) limit of a single

spike string. It is easy to see the profile of single-spike solution (3.25) with ω = 0 agrees

with that of pulsating string solution (3.23) with k = 1 , however, due to a singular nature
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Figure 3: The k → 1 limit of type (i)′ helical string: single-spike string (ω = 0.78) . The figure

shows the single-spin case (u2 = ω2 = 0).

of the v → 0 limit, the angular momenta of both solutions (3.27) and (3.24) do not agree

if we just naively take the limits on both sides.

k → 0 limit: rational circular (static) strings. Another interesting limit is to send

k to zero, where elliptic functions reduce to rational functions. The Virasoro conditions

become

a2 + b2 = u2
2 + tanh2 ω2 and ab = ±u2 tanh ω , (3.29)

where u2 =
√

U + tanh2 ω . This can be solved by a = u2 and b = tanh ω (assuming

U > 0). The profile is given by

η0 =
√

Uτ̃ , ξ1 = 0 , ξ2 = ei
√

Uσ̃ . (3.30)

This is an unstable string that has no spins and just wraps around one of the great circles,

and can be viewed as the τ ↔ σ transformed version of a point-like, BPS string with

E − (J1 + J2) = 0 . The conserved charges for one period reduce to

E = πµ
√

U , J1 = J2 = 0 . (3.31)

The winding number for the ϕ2-direction becomes N2 = µ
√

U , so the energy can also be

written as

E = N2

√
λ . (3.32)

This result will be suggestive when we discuss gauge theory later in section 5, since it

predicts that the canonical dimension of SYM dual operator, which should be the SO(6)

singlet state, is also given by (integer) ×
√

λ in this limit. Note also that in the limit

µ
√

U → ∞, the profile (3.30) agrees with the ω = π/2 case of the single-spike string after

the interchange ξ1 ↔ ξ2 . We will refer to this fact in the gauge theory discussion.

u2, ω2 → 0: single-spin limit. A single-spin type (i)′ helical string is obtained by

setting u2 = ω2 = 0 , which results in J2 = N2 = 0 .10 In view of (3.11), the condition

10It turns out the other single-spin limit u1 , ω1 → 0 , which gives J1 = 0 , does not result in real solutions

for this type (i)′ case.
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u2 = ω2 = 0 requires U = 0 , u1 = dn(iω) and C =
√

k/dn(iω) , and the Virasoro

constraints (3.8) and (3.9) are solved by setting a = k cn(iω) , b = −ik sn(iω) and v =

−i sn(iω)/ cn(iω) . Periodicity conditions then become

∆σ =
2π

n
=

2iK

µ sn(iω)
,

2πN2

n
= 0 , (3.33)

∆ϕ1 =
2πN1

n
= 2iK

(
cn(iω) dn(iω)

sn(iω)
+ Z0(iω)

)
+

(
2n′

1 + 1
)
π , (3.34)

and the conserved charges for one period are

E =
ik

sn(iω)
K , J1 =

1

k dn(iω)

[
E −

(
1 − k2

)
K

]
, J2 = 0 . (3.35)

3.2 Type (ii)′ helical strings

The type (ii)′ solution can be obtained from the type (i)′ solutions, either by shifting

ω2 7→ ω2 + K′ or by transforming k to 1/k . The profile is given by11

η̂0 = âT + b̂X , (3.36)

ξ̂1 = Ĉ
Θ0(0)√

k Θ0(iω1)

Θ1(T − iω1)

Θ0(T )
exp

(
Z0(iω1)T + iu1X

)
, (3.37)

ξ̂2 = Ĉ
Θ0(0)√

k Θ3(iω2)

Θ2(T − iω2)

Θ0(T )
exp

(
Z3(iω2)T + iu2X

)
, (3.38)

where Ĉ is the normalization constant,

Ĉ =

(
cn2(iω2)

dn2(iω2)
− sn2(iω1)

)−1/2

. (3.39)

The equations of motion force u1 and u2 to satisfy

u2
1 = U + dn2(iω1) , u2

2 = U +
1 − k2

dn2(iω2)
, (3.40)

and the Virasoro conditions impose the following constraints between parameters â and b̂ ,

â2 + b̂2 = k2 − 2k2 sn2(iω1) − U + 2u2
2 , (3.41)

â b̂ = −i Ĉ2

(
u1 sn(iω1) cn(iω1) dn(iω1) + u2

(
1 − k2

) sn(iω2) cn(iω2)

dn3(iω2)

)
. (3.42)

As in the type (i)′ case, we can set η̂0 =
√

â2 − b̂2 τ̃ with v̂ ≡ b̂/â ≤ 1 . The periodicity

conditions for the type (ii)′ solutions become

∆σ ≡ 2π

m
=

2K
√

1 − v̂2

v̂µ
, (3.43)

∆ϕ1 ≡ 2πM1

m
= 2K

(u1

v̂
+ iZ0(iω1)

)
+

(
2m′

1 + 1
)
π , (3.44)

∆ϕ2 ≡ 2πM2

m
= 2K

(u2

v̂
+ iZ3(iω2)

)
+

(
2m′

2 + 1
)
π , (3.45)

11We use a hat to indicate type (ii)′ variables.
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Figure 4: Type (ii)′ helical string (k = 0.40 , m = 8) . The figure shows a single-spin case

(u2 = ω2 = 0) .

where m = 1, 2, . . . counts the number of periods in 0 ≤ σ ≤ 2π , and M1,2 are the winding

numbers in the ϕ1,2-directions respectively, and m′
1,2 are integers. The conserved charges

are given by

Ê =
ma(1 − v2)

v
K =

n(a2 − b2)

b
K , (3.46)

Ĵ1 =
mĈ2 u1

k2

[
E −

(
dn2(iω1) +

ik2

v̂u1
sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (3.47)

Ĵ2 =
mĈ2 u2

k2

[
−E + (1 − k2)

(
1

dn2(iω2)
− ik2

v̂u2

sn(iω2) cn(iω2)

dn3(iω2)

)
K

]
. (3.48)

Just as in the type (i) ↔ (i)′ case, the winding numbers and the conserved charges of

the original type (ii) and (ii)′ are related by Ê(â, b̂) = −Êorig(b̂, â) , Ĵi(v̂) = −Ĵ orig
i (−1/v̂)

and Mi(v̂) = −Morig
i (−1/v̂) .

As in the type (i)′ case, we can take various limits.

ω1,2 → 0 limit: pulsating strings. The profiles (3.36)-(3.38) reduce to

η̂0 =
√

1 + u2
2 τ̃ , ξ̂1 = sn(τ̃ , k) eiu1σ̃ , ξ̂2 = cn(τ̃ , k) eiu2σ̃ , (3.49)

with constraint u2
1 − u2

2 = k2 . The conserved charges for a period become

E =
π

k

√
M2

1 + (k2 − 1) M2
2 , J1 = J2 = 0 . (3.50)

Right of figure 2 shows the time evolution of the type (ii)′ pulsating string. Again, when

we set u2 = 0 , this string reduces to the simplest pulsating solution studied in [44].

k → 1 limit: single-spike strings. This limit results in essentially the same solution

as the type (i)′ case, that is an array of single-spike strings. The only difference is that

while in the type (i)′ case every cusp appears in the same side about the equator, say the

northern hemisphere, in the type (ii)′ case cusps appear in both the northern and southern

hemispheres in turn, each after an infinite winding.
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k → 0 limit: rational circular strings. In the k → 0 limit, the profile becomes

η̂0 =

√
â2 − b̂2 τ̃ , ξ̂1 = Ĉ sin(T − iω1) eiu1X , ξ̂2 = Ĉ cos(T − iω2) eiu2X , (3.51)

with Ĉ =
(
cosh2 ω2 + sinh2 ω1

)−1/2
and u2

1 = u2
2 = U + 1 . Virasoro constraints imply the

following set of relations between the parameters â and b̂ (with â ≥ b̂):

â2 + b̂2 = −U + 2u2
2 , (3.52)

â b̂ = Ĉ2
√

U + 1 (sinhω1 cosh ω1 ∓ sinhω2 cosh ω2) . (3.53)

Here ∓ reflects the sign ambiguity in the angular momenta. The periodicity conditions

become

∆σ ≡ 2π

m
=

π
√

1 − v̂2

v̂µ
, (3.54)

∆ϕ1 ≡ 2πM1

m
=

πu1

v̂
+

(
2m′

1 + 1
)
π, (3.55)

∆ϕ2 ≡ 2πM2

m
=

πu2

v̂
+

(
2m′

2 + 1
)
π . (3.56)

The conserved charges for a single period are evaluated as

Ê =
πâ

(
1 − v̂2

)

2v̂
, Ĵ1 =

πĈ2

2v̂
sinhω1 cosh ω1 , Ĵ2 = −πĈ2

2v̂
sinhω2 cosh ω2 .

(3.57)

u2 , ω2 → 0: single-spin limit. As in the type (i)′ case, we obtain the type (ii)′ helical

strings with J2 = M2 = 0 by setting u2 = ω2 = 0.12 Then we find U = −1 + k2 , u1 =

k cn(iω) and Ĉ = 1/ cn(iω) . The Virasoro conditions require â = dn(iω) , b̂ = −ik sn(iω)

and v̂ = −ik sn(iω)/dn(iω) . The periodicity conditions become

∆σ =
2π

m
=

2iK

µk sn(iω)
,

2πM2

m
= 0 , (3.58)

∆ϕ1 =
2πM1

m
= 2iK

(
cn(iω) dn(iω)

sn(iω)
+ Z0(iω)

)
+

(
2m′

1 + 1
)
π , (3.59)

and the conserved charges for a single period are given by

Ê =
i

k sn(iω)
K , Ĵ1 =

1

k cn(iω)
E , Ĵ2 = 0 . (3.60)

12For the type (ii)′ case, the other single-spin limit u1 = ω1 = 0 results in U = −1 , u2
2 = −1 + (1 −

k2)/dn2(iω2) and Ĉ = dn(iω2)/ cn(iω2) . It turns out equivalent to the ω1,2 → 0 limit, because u2 must

be real, and thus the second condition implies ω2 = 0 .
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4. Finite-gap interpretation

The helical strings (3.2), (3.3) of [28] were shown in [34] to be equivalent to the most

general elliptic (“two-cut”) finite-gap solution on R × S3 ⊂ AdS5 × S5 , with both cuts

intersecting the real axis within the interval (−1, 1) (see figure 5 (a)). The aim of this

section is to present the corresponding finite-gap description of the τ ↔ σ transformed

helical string (3.6), (3.7) obtained in the previous section.

Recall first from [34] that the (σ, τ)-dependence of the general finite-gap solution enters

solely through the differential form

dQ(σ, τ) =
1

2π
(σdp + τdq) , (4.1)

where dp and dq are the differentials of the quasi-momentum and quasi-energy defined

below by their respective asymptotics near the points x = ±1. The differential multiplying

σ in dQ(σ, τ) (namely dp) is related to the eigenvalues of the monodromy matrix, which

by definition is the parallel transporter along a closed loop σ ∈ [0, 2π] on the worldsheet.

This is because the Baker-Akhiezer vector ψ(P, σ, τ), whose (σ, τ)-dependence also enters

solely through the differential form dQ(σ, τ) in (4.1), satisfies [35]

ψ(P, σ + 2π, τ) = exp

{
i

∫ P

∞+

dp

}
ψ(P, σ, τ).

Now it is clear from (4.1) that the σ ↔ τ operation can be realised on the general finite-gap

solution by simply interchanging the quasi-momentum with the quasi-energy,

dp ↔ dq . (4.2)

However, since we wish dp to always denote the differential related to the eigenvalues of

the monodromy matrix, by the above argument it must always appear as the coefficient of

σ in dQ(σ, τ). Therefore equation (4.2) should be interpreted as saying that the respective

definitions of the differentials dp and dq are interchanged, but dQ(σ, τ) always takes the

same form as in (4.1).

Before proceeding let us recall the precise definitions of these differentials dp and dq .

Consider an algebraic curve Σ , which admits a hyperelliptic representation with cuts. For

what follows it will be important to specify the position of the different cuts relative to

the points x = ±1 , i.e., figures 5 (a) and 5 (b) are to be distinguished for the purpose of

defining dp and dq . We could make this distinction by specifying an equivalence relation on

representations of Σ in terms of cuts, where two representations are equivalent if the cuts

of one can be deformed into the cuts of the other within C \ {±1} . It is straightforward

to see that there are only two such equivalence classes for a general algebraic curve Σ .

For example, in the case of an elliptic curve Σ the representatives of these two equivalence

classes are given in figures 5 (a) and 5 (b). Now with respect to a given equivalence class

of cuts, the differentials dp and dq can be uniquely defined on Σ as in [35] by the following

conditions:

• their A-period vanishes.
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Figure 5: Different possible arrangements of cuts relative to x = ±1 : (a) corresponds to the

helical string, (b) corresponds to the τ ↔ σ transformed helical string.

• their respective poles at x = ±1 are of the following form, up to a trivial overall

change of sign (see [34]),

dp(x±) ∼
x→+1

∓ πκdx

(x − 1)2
, dp(x±) ∼

x→−1
∓ πκdx

(x + 1)2
, (4.3)

dq(x±) ∼
x→+1

∓ πκdx

(x − 1)2
, dq(x±) ∼

x→−1
± πκdx

(x + 1)2
, (4.4)

where x± ∈ Σ denotes the pair of points above x , with x+ being on the physical

sheet, and x− on the other sheet.13

Once the differentials dp and dq have been defined by (4.3) and (4.4) with respect to a

given equivalence class of cuts, one can move the cuts around into the other equivalence

class (by crossing say x = −1 with a single cut) to obtain a representation of dp and dq

with respect to the other equivalence class of cuts. So for instance, if we define dp and dq

by (4.3) and (4.4) with respect to the equivalence class of cuts in figure 5 (a), then with

respect to the equivalence class of cuts in figure 5 (b) the definition of dp will now be (4.4)

and that of dq will now be (4.3).

In summary, both equivalence classes of cuts represents the very same algebraic curve

Σ , but each equivalence class gives rise to a different definition of dp and dq . So the two

equivalence classes of cuts give rise to two separate finite-gap solutions but which can be

related by a τ ↔ σ transformation (4.2). Indeed, if in the construction of [34] we assume

the generic configuration of cuts given in figure 5 (b), instead of figure 5 (a) as was assumed

in [34], then the resulting solution is the generic helical string but with

X ↔ T

namely the 2D transformed helical string (3.6), (3.7). Therefore, with dp and dq defined

as above by their respective asymptotics (4.3) and (4.4) at x = ±1, the helical string

13They should not be confused with AdS/CFT spectral parameters (5.3).
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of [28, 34] is the general finite-gap solution corresponding to the class represented by

figure 5 (a), whereas the 2D transformed helical string corresponds to the most general

elliptic finite-gap solution on R × S3 with cuts in the other class represented in figure 5

(b).

As is clear from the above, a given finite-gap solution is not associated with a particular

equivalence class of cuts; since dp and dq are defined relative to an equivalence class of cuts,

one can freely change equivalence class provided one also changes the definitions of dp and

dq with respect to this new equivalence class according to (4.2), so that in the end dp and

dq define the same differentials on Σ in either representation. For example, we can describe

the 2D transformed helical string in two different ways: either we take the configuration of

cuts in figure 5 (b) with dp and dq defined as usual by their asymptotics (4.3) and (4.4) at

x = ±1 , or we take the configuration of cuts in figure 5 (a) but need to swap the definitions

of dp and dq in (4.3) and (4.4). In the following we will use the latter description of figure 5

(a) in order to take the singular limit k → 1 where the cuts merge into a pair of singular

points.

We can obtain expressions for the global charges J1 = (JL + JR)/2 , J2 = (JL − JR)/2

along the same lines as in [34] for the helical string. In terms of the differential form

α ≡
√

λ

4π

(
x +

1

x

)
dp , α̃ ≡

√
λ

4π

(
x − 1

x

)
dp , (4.5)

we can write

J1 = −Res0+α + Res∞+α = Res0+α̃ + Res∞+α̃ , (4.6)

J2 = −Res0+α − Res∞+α . (4.7)

Note that α and α̃ both have simple poles at x = 0 , ∞ but α̃ also has simple poles at x = ±1

coming from the double poles in dp at x = ±1 . It follows that we can rewrite (4.6), (4.7)

as

J1 = −
2∑

I=1

1

2πi

∫

AI

α̃ − Res(+1)+ α̃ − Res(−1)+ α̃ , (4.8)

J2 =

2∑

I=1

1

2πi

∫

AI

α , (4.9)

where AI is the A-cycle around the I-th cut. Whereas in [34] the residues of α̃ at x = ±1

were of the same sign (as a consequence of p(x) having equal residues at x = ±1) so that

their sum gave the energy E of the string, in the present 2D-transformed helical case the

residues of α̃ at x = ±1 are now opposite (since p(x) now has opposite residues at x = ±1)

and therefore cancel in the above expression for J1 , resulting in the following expressions

−J1 =

2∑

I=1

1

2πi

∫

AI

α̃ , J2 =

2∑

I=1

1

2πi

∫

AI

α . (4.10)
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Figure 6: Definitions of cycles.

Figure 7: k → 1 limit of cuts.

In parallel to the discussion of the helical string case in [34], there are two types

of limits one can consider: the symmetric cut limit (where the curve acquires the extra

symmetry x ↔ −x) which corresponds to taking ω1,2 → 0 in the finite-gap solution, or the

singular curve limit which corresponds to taking the moduli of the curve to one, k → 1 . In

the symmetric cut limit the discussion is identical to that in [34] (when working with the

configuration of cuts in figure 5 (a)), in particular there are two possibilities corresponding

to the type (i)′ and type (ii)′ cases, for which the cuts are symmetric with x1 = −x̄2 and

imaginary with x1 = −x̄1 , x2 = −x̄2 respectively (see figure 2 of [34]).

In the singular limit k → 1 where both cuts merge into a pair of singular points at

x = x1 , x̄1 [34], the sum of A-cycles turns into a sum of cycles around the points x1, x̄1 ,

so that (4.10) yields in this limit

−J1 = Resx1
α̃ + Resx1

α̃ , J2 = Resx1
α + Resx1

α . (4.11)

Moreover, in the singular limit dp acquires simple poles at x = x1, x̄1 so that the periodicity

condition about the B-cycle,
∫
B dp = 2πn , implies

Resx1
dp =

n

i
.
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Let us set n = 1 (n can be easily recovered at any moment). Then (4.11) simplifies to

−J1 =

√
λ

4π

∣∣∣∣
(

x1 −
1

x1

)
−

(
x̄1 −

1

x̄1

)∣∣∣∣ , (4.12)

J2 =

√
λ

4π

∣∣∣∣
(

x1 +
1

x1

)
−

(
x̄1 +

1

x̄1

)∣∣∣∣ . (4.13)

The energy E =
√

λκ = (n
√

λ/π) E diverges in the singular limit k → 1 , but this diver-

gence can be related to the one in ∆ϕ1 . In the present case the σ-periodicity condition∫
B dp ∈ 2πZ can be written as (c.f., equation (2.23) in [34])

−2K
√

1 − v2

v
=

2π

n
κ′ ≡ 2πκ|x1 − x̄2|

n
√

y+y−
,

where K = K(k) , y± = y(x)|x=±1 > 0 , y(x) = (x − x1)(x − x̄1)(x − x2)(x − x̄2) and v

can be expressed in the present setup as v = y+−y−
y++y−

(see [34]). Using this σ-periodicity

condition the energy can be expressed in the k → 1 limit as

E =
u1

v
(1 − v2)K(1) .

We can relate this divergent expression with the expression (3.14) for ∆ϕ1 which also

diverge in the limit k → 1 , making use of the relation u1v = tan ω1 (see [34] where the

notation is u1 = v− and ω1 = ρ̃−), and find

E − ∆ϕ1

2
= −

(
ω1 −

(2n′
1 + 1)π

2

)
≡ θ̄ . (4.14)

Comparing this scenario with the one for helical strings in [34] we can write an expression

for θ̄ in terms of the spectral data x1 of the singular curve. Identifying

θ̄ = − i

2
ln

(
x1

x̄1

)
, (4.15)

the expressions (4.12), (4.13) and (4.15) together imply the relation14

−J1 =

√
J2

2 +
λ

π2
sin2 θ̄ . (4.16)

5. Gauge theory duals

In view of the pulsating (oscillating) nature of the τ ↔ σ transformed helical strings we saw

in the previous sections, the gauge theory operators dual to those classical strings should

be made up not only of holomorphic but also of non-holomorphic scalars. In this section

we discuss the gauge theory interpretation of 2D transformed strings, which includes a

single-spike string and a static circular string.

14The sign difference between (3.27) and here is not essential.
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First let us review some relevant aspects of the SU(2) magnon boundstates. Let Z or

W be two of the three complex scalar fields of N = 4 SYM (the third one will be denoted

Y ). Then operators in the SU(2) sector take the forms O = Tr (Φi1Φi2 . . .) + . . . with each

Φil (l = 1, . . . , L) being either Z or W . The BPS operator Tr (ZZ . . .) made up only of Z

is the ferromagnetic ground state for the SYM spin-chain. In [16], it is shown that dyonic

giant magnons are dual to magnon boundstates ODGM ∼ Tr
(
ZKW M

)
+ . . . in the SYM

spin-chain (K → ∞ , M : finite), whose dispersion relation is given by

∆ODGM
− K =

√
M2 + 16g2 sin2

(
P

2

)
, g ≡

√
λ

4π
. (5.1)

This agrees with the energy-spin relation for a dyonic giant magnon under the identifi-

cations J1 = K (→ ∞) and J2 = M . Here P =
∑M

j=1 pj is the sum of the momenta

pj (j = 1, . . . ,M) of the constituent magnons. They satisfy the following boundstate

condition,

x−(pj) = x+(pj+1) for j = 1, . . . ,M , (5.2)

where x±(p) are the standard AdS/CFT spectral parameters, defined by

x±(u) = x

(
u ± i

2g

)
where x(u) =

1

2

(
u +

√
u2 − 4

)
, (5.3)

and u = u(p) is the rapidity variable,

u(p) =
1

2
cot

(p

2

)√
1 + 16g2 sin2

(p

2

)
. (5.4)

Now let us turn to the present oscillating case. First we discuss the two-spin single-

spike string case. As we have seen, in contrast to the dyonic giant magnon, it has finite

spins Ji (i = 1, 2) and infinite energy. This fact allows us to claim that the relevant dual

SYM operators should look like

OSS = Tr
(
ZK ZK ′

W M S(L−K−K ′−M)/2
)

+ . . . , L ,K ,K ′ → ∞ , K − K ′ ,M : finite .

(5.5)

In (5.5), the factor S appearing in (5.5) is the SO(6) -singlet composite15

S ∼ ZZ + WW + Y Y . (5.6)

One can easily understand that the pairs like ZZ give rise to oscillating motion in the sting

side, since if we associate Z to a particle rotating along a great circle of S5 clockwise, the

other particle associated with Z rotates counterclockwise, thus making the string connect-

ing these two points non-rigid and oscillating. The dots in (5.5) denotes terms that mix

15The SO(6) sector is not closed beyond one-loop level in λ , and operator mixing occurs in the full

PSU(2, 2|4) sector due to the higher-loop effects. So one might think S should be a PSU(2, 2|4) singlet

rather than an SO(6) singlet. However, we can still expect that such mixing into PSU(2, 2|4) is suppressed

in our classical (L → ∞) setup as in [47]. We would like to thank J. Minahan for discussing this point.
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under renormalization. An important assumption is that M W s form a boundstate. In-

deed loop-effects mix ZZ with other neutral combinations WW and Y Y , but it is assumed

the boundstate condition still holds. Let X± be the spectral parameters assigned to the

boundstate. We write them as

X± = R e±iP/2 with R =
M +

√
M2 + 16g2 sin2 (P/2)

4g sin (P/2)
(> 1) , (5.7)

where P is the momentum carried by the boundstate. Recall that we took Tr (ZZ . . .) as

the vacuum state, therefore W is an excitation above the vacuum with ∆0 − J1 = 1 ,16

whereas Z is an excitation with ∆0 − J1 = 2 .17 The composite S also contributes to the

spin-chain energy in some way, and we must take all the contributions into account when

evaluating the total energy ∆OSS
− J1 of (5.5). We assume that the contribution of M W s

results in two parts; one is the boundstate energy that contributes in the same way as in

the case of an SU(2) boundstate ODGM ∼ Tr
(
ZKW M

)
+ . . . (K → ∞) , and the other is

its interactions with other fields. One can then write down the total energy as

∆OSS
− (K − K ′) =

g

i

[(
X+ − 1

X+

)
−

(
X− − 1

X−

)]
+ χ . (5.8)

The first term in r.h.s. comes from the boundstate W M , while the last χ accounts for

contributions concerning S , Z and all their interactions with other fields, including W s .

Currently we have no knowledge of how the actual form of χ looks like, and so we leave it

as some function of the coupling and boundstate momentum here (however, we will later

discuss its form in the strong coupling, infinite-winding limit). One can also express the

J2 -charge carried by the boundstate in terms of the spectral parameters as

M =
g

i

[(
X+ +

1

X+

)
−

(
X− +

1

X−

)]
. (5.9)

Now perform a change of basis for the spin-chain, and take Tr
(
Z Z . . .

)
as the vacuum

state, instead of Tr (ZZ . . .) . This particular transformation of susy multiplet, namely the

charge conjugation, maps the original W M to WM with new spectral parameters

X̃± = 1/X± . (5.10)

This is actually a crossing transformation that maps a usual particle to its conjugate

particle (antiparticle) [7]. In the new basis, W s, Zs and S = S play the role of excitations

above the new vacuum. The contribution of S to the new vacuum should be the same as

in the old case since it is an SO(6) singlet, and we assume the total contributions from all

excitations to be the same as in the old case. Then one obtains a relation similar to (5.8),

∆OSS
− (K ′ − K) =

g

i

[(
X̃+ − 1

X̃+

)
−

(
X̃− − 1

X̃−

)]
+ χ , (5.11)

16We follow a convention such that a Z field has ∆0 − J1 = 0 , where ∆0 denotes the bare dimension.
17In fact, Z is not a fundamental excitation. We should regard it as an excitation corresponding to a

two-magnon state.
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and similarly for the second charge. From (5.8)–(5.11), it follows that

∆OSS
= χ and K ′ − K =

√
M2 + 16g2 sin2

(
P

2

)
. (5.12)

Then if we identify naturally

K − K ′ ≡ J1 , M ≡ J2 and P ≡ 2πm ± 2θ̄ (m ∈ Z ; 0 ≤ θ̄ ≤ π/2) , (5.13)

the second relation in (5.12) precisely reproduces the dispersion relation for single-spike

strings, after substituting g2 = λ/16π2 . Here we included an integer degree of freedom m

that plays the role of the winding number in the string theory side. One can also deduce

that
J2

J1
=

R2 − 1

R2 + 1
, (5.14)

which corresponds to sin γ in the notation used in [36]. In (5.13), one may choose either

the plus/minus signs in P ; they correspond to the momenta of a particle/antiparticle.

Notice also the above argument, resulting in

−J1 =
g

i

[(
X+ − 1

X+

)
−

(
X− − 1

X−

)]
, (5.15)

J2 =
g

i

[(
X+ +

1

X+

)
−

(
X− +

1

X−

)]
, (5.16)

is consistent with what we found in the previous section, (4.12) and (4.13), if we, as usual,

identify the string theory spectral parameters x1 and x̄1 (in finite-gap language) with the

ones for gauge theory X+ and X− (for the boundstate).

To proceed in the reasoning, suppose the asymptotic behavior of χ in the strong

coupling and infinite-“winding” limit becomes

χ ∼ 2gP = m
√

λ ± θ̄

π
, (m → ∞) . (5.17)

We kept here ±θ̄/π term to ensure that χ is not just given by (integer) ×
√

λ but contains

some continuous shift away from that. We will give more explanations concerning this

conjecture soon. The relation (5.17) then implies that

∆OSS
−

√
λ

2π
· 2πm = ±

√
λ

π
θ̄ , (5.18)

where we used the identifications we made before. This can be compared to the string

theory result for the single-spike, (3.28). The integer m here corresponds to the winding

number N1 there (recall that for single spike case, we had ∆ϕ1 = 2πN1 due to the pe-

riodicity condition). When there are n boundstates in the spin-chain all with the same

momentum P , r.h.s. of (5.18) is just multiplied by n and modified to n(
√

λ/π) θ̄ , which

corresponds to an array of n single-spikes.

Let us explain the conjecture (5.17) in greater detail. Of course one of the motivations

is that it reproduces the relation (5.18) of the string side, as we have just seen. Further
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evidence can be found by considering particular sets of operators contained in (5.5) and

checking for consistency. For example, let us consider the limit K − K ′ → 0 and M → 0 .

This takes the operator (5.5) to the form Tr
(
(ZZ)KSL/2−K

)
+ . . . , which must sum up

to the singlet operator TrSL/2 for it to be a solution of the Bethe ansatz equation. In

this limit, the “angle” θ̄ should vanish in view of the second equation in (5.12) and (5.13).

Therefore the relation (5.17) together with the first equation in (5.12) imply that the

canonical dimension of the singlet operator is just given by

∆TrSL/2

∣∣
L→∞ = m

√
λ , (m → ∞) , (5.19)

which agrees with the energy expression (3.32) of the τ ↔ σ transformed point-like BPS

string (in the limit µ
√

U → ∞), under the identification N2 = m .

As we have seen, in contrast to the dyonic giant magnon vs. magnon bound state

ODGM ∼ Tr
(
Z∞W M

)
+ . . . case, the correspondence between two-spin single-spike vs. OSS

given in (5.5) is slightly more involved. In the former correspondence in the infinite spin

sector, the magnon boundstate is an excitation above the BPS vacuum OF ∼ Tr (Z∞) , and

one can think of the boundstate W M as the counterpart of the corresponding dyonic giant

magnon. For the latter case in the infinite winding sector, however, it is not the boundstate

W M alone but the “ZK ZK ′

W M + . . . ” part of OSS that encodes the single-spike. It can

be viewed as an excitation above the SO(6) singlet operator OAF ∼ TrSL/2 . Actually

this is the “antiferromagnetic” state of the SO(6) spin-chain, which is “as far from BPS as

possible” (Notice that a solution of the Bethe ansatz equation with J1 = J2 = J3 = 0 is

nothing but the SO(6) singlet state). It is dual to the rational circular static string (3.30)

obtained by performing a τ ↔ σ transformation on the point-like BPS string.

6. Summary and discussions

In the previous works [28, 34], three of the current authors constructed the most general

elliptic (“two-cut”) classical string solutions on R×S3 ⊂ AdS5 ×S5 , called helical strings.

They were shown to include various strings studied in the large-spin sector. Schematically,

the family tree reads

I :
Type (i) helical string

with generic k and ω1,2
−→





- Point-like (BPS), rotating string (k → 0)

- Array of dyonic giant magnons (k → 1)

- Elliptic, spinning folded string (ω1,2 → 0)

,

II :
Type (ii) helical string

with generic k and ω1,2
−→





- Rational, spinning circular string (k → 0)

- Array of dyonic giant magnons (k → 1)

- Elliptic, spinning circular string (ω1,2 → 0)

.

Moreover, the single-spin limit of the type (i) helical strings agrees with so-called “spiky

strings” studied in [23, 20].18

18The two-spin helical strings are different from the spiky strings in that they have no singular points in

spacetime. When embedded in R × S3 , the singular “cusps” of the spiky string that apparently existed on

R × S2 are all smoothed out to result in non-spiky profiles.
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For Cases I and II , the gauge theory duals are also well-known. They are all of the

form

O ∼ Tr
(
ZL−MW M

)
+ . . . , (6.1)

with L very large. For example, for the type (i) case, a BPS string (k → 0) of course

corresponds to M = 0 , and a BMN string corresponds to M very small. A dyonic gi-

ant magnon corresponds to an M -magnon boundstate in the asymptotic SYM spin-chain

(L → ∞), which is described by a straight Bethe string in rapidity plane [17, 19]. In the

Bethe string, all M roots are equally spaced in the imaginary direction, reflecting the pole

condition of the asymptotic S-matrix. As to the elliptic folded/circular strings, they corre-

spond to, respectively, the so-called double-contour/imaginary-root distributions of Bethe

roots [48].

In contrast, in the current paper, we explored non-holomorphic sector of classical

strings on R × S3 , and found a new interpolation. This includes a large-winding sector

where m
√

λ becomes of the same order as the energy which diverges (m being the winding

number). We saw that when classical strings on R × S3 ⊂ AdS5 × S5 are considered

in conformal gauge, an operation of interchanging τ and σ , as well as keeping temporal

gauge t ∝ τ , maps the original helical strings to another type of helical strings. Roughly

speaking, rotating/spinning solutions with large spins became oscillating solution with

large windings. Again, schematically, we found :

I′ :
Type (i)′ helical string

with generic k and ω1,2
−→





- Rational, static circular string (k → 0)

- Array of single-spike strings (k → 1)

- Elliptic, type (i)′ pulsating string (ω1,2 → 0)

,

II′ :
Type (ii)′ helical string

with generic k and ω1,2
−→





- Rational circular string (k → 0)

- Array of single-spike strings (k → 1)

- Elliptic, type (ii)′ pulsating string (ω1,2 → 0)

.

In section 4, we investigated 2D-transformed helical strings from the finite-gap per-

spective. We were able to understand the effect of the τ ↔ σ operation as an interchange

of quasi-momentum and quasi-energy. The transformed helical strings were described as

general two-cut finite-gap solutions as in the original case [34], the only difference being the

asymptotic behaviors of differentials at x → ±1 (or equivalently, different configurations

of cuts with respect to interval (−1, 1)). By expressing the charges in terms of spectral

parameters (branch-points of the cuts), the charge relations for single spikes were also

reproduced.

In section 5, the gauge theory duals of the τ ↔ σ transformed strings (derivatives of

type (i)′ and (ii)′ helical strings) were identified with operators of the form

O ∼ Tr
(
ZK ZK ′

W M S(L−K−K ′−M)/2
)

+ . . . , (6.2)

with S the SO(6) singlet composite (5.6). The single-spike limit k → 1 was identified with

the K ,K ′ → ∞ limit while keeping K − K ′ and M finite (see (5.5)). In this limit, the

“ZK ZK ′

W M + . . . ” part in the operator, of which W M is assumed to form a boundstate,
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was claimed to be responsible for the transverse excitation (spikes) of the string state

winding infinitely many times around a great circle of S5 . In other words, the spikes are

dual to excitations above the “antiferromagnetic” state TrSL/2 . This “antiferromagnetic”

state is the singlet state of the SO(6) spin-chain, and located “as far from BPS as possible”

in the spin-chain spectrum. These features can be compared to that of magnons in the

large spin sector (impurity above BPS vacuum) corresponding to the transverse excitations

of the point-like string orbiting around a great circle of S5 .

It would be interesting to check the prediction (5.17) directly by using the conjectured

AdS/CFT Bethe ansatz equation. In the SU(2) sector where the number of operators is

finite, the nature of the antiferromagnetic state is better understood [49], and the upper

bound on the energy is known [50] (see also [51]). It is proportional to
√

λ , which is the

same behavior as our conjecture (5.17). Recall that we argued the SO(6) singlet state

was dual to a large winding string state with zero-spins, (3.30). If the prediction (5.17)

is correct, then we should be able to reproduce it by the SO(6) Bethe ansatz equation

approach. An approach similar to [50] would be useful. In this case, the “spiky magnon”

part “ZK ZK ′

W M +. . . ” could be understood as (macroscopic number of) “holes” made in

the continuous mode numbers associated with the SO(6) singlet Bethe root configuration.19

The SO(6) singlet state was also studied in [52], where an integral equation for the Bethe

root density was derived. It would be interesting to study it at strong coupling and compare

it with our results.20

Since the τ ↔ σ transformed string solutions discussed in this paper are periodic clas-

sical solutions, one can define corresponding action variables, namely the oscillation num-

bers. By imposing the Bohr-Sommerfeld quantization condition, one obtains integer valued

action variables, which from lesson of the large spin sector [16] we can again expect to cor-

respond to filling fractions defined for the SO(6) spin-chain. It would be interesting to

understand this correspondence from the finite-gap perspective along the lines of [35, 53].

It would be also interesting to compare the spectra of AdS/CFT near the SO(6) “an-

tiferromagnetic” vacuum by an effective sigma model approach (without any apparent use

of integrability) [54]. In the SU(2) case, a similar approach was taken in [51], where a

continuum limit of the half-filled Hubbard chain was compared to an effective action for

“slow-moving” strings with J1 = J2 . In our case, some Hubbard-like model with SO(6)

symmetry would give clues.

We hope to revisit these issues in other publications in the near future.

Note added After the submission of the first version of our paper to arXiv.org 0709.4033

[hep-th] for publication, we learned that the paper 0709.4231 [hep-th] [55] appeared,

in which single-spike strings are generalized to three-spin cases. We thank N. P. Bobev

and R. C. Rashkov for correspondence.

19In the weak coupling regime, the SO(6) singlet Bethe root configuration and excitations above it were

studied in [2, 45, 47].
20We thank M. Staudacher for pointing this out to us.
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A. Helical strings on AdS3 × S1

This appendix is devoted to helical string solutions in the SL(2) sector. The construction

almost parallels that in [28], however, non-compactness of the AdS space lead to new

non-trivial features compared to the sphere case.

A.1 Classical strings on AdS3 × S1 and complex sinh-Gordon model

A string theory on AdS3 × S1 ⊂ AdS5 × S5 spacetime is described by an O(2, 2) × O(2)

sigma model. Let us denote the coordinates of the embedding space as η0 , η1 (for AdS3)

and ξ1 (for S1) and set the radii of AdS3 and S1 both to unity,

~η ∗ · ~η ≡ − |η0|2 + |η1|2 = −1 , |ξ1|2 = 1 . (A.1)

In the standard polar coordinates, the embedding coordinates are expressed as

η0 = cosh ρ eit , η1 = sinh ρ eiφ1 , ξ1 = eiϕ1 , (A.2)

and all the charges of the string states are defined as Nöther charges associated with shifts

of the angular variables. The bosonic Polyakov action for the string on AdS3 ×S1 is given

by

S = −
√

λ

4π

∫
dσdτ

[
γab (∂a~η

∗ · ∂b~η + ∂aξ
∗ · ∂bξ ) + Λ̃

(
~η ∗ · ~η + 1

)
+ Λ

(
ξ∗1 · ξ1 − 1

)]
,

(A.3)

and we take the same conformal gauge as in the R × S3 case. From the action (A.3) we

get the equations of motion

∂a∂
a~η − (∂a~η

∗ · ∂ a~η) ~η = 0 , ∂a∂
aξ1 + (∂aξ

∗
1 · ∂ aξ1) ξ1 = 0 , (A.4)

and Virasoro constraints

0 = Tσσ = Tττ =
δab

2
(∂a~η

∗ · ∂b~η + ∂aξ
∗
1 · ∂bξ1) , (A.5)

0 = Tτσ = Tστ = Re (∂τ~η
∗ · ∂σ~η + ∂τ ξ1 · ∂σξ∗1) . (A.6)
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The PLR reduction procedure, which we made use of in obtaining the O(4) sigma

model solutions from Complex sine-Gordon solution, also works for the current case in

much the same way. The O(2, 2) sigma model in conformal gauge is now related to what

we call Complex sinh-Gordon (CshG) model, which is defined by the Lagrangian

LCshG =
∂ aψ∗∂aψ

1 + ψ∗ψ
+ ψ∗ψ , (A.7)

with ψ = ψ(τ, σ) being a complex field. It can be viewed as a natural generalization of the

well-known sinh-Gordon model in the sense we describe below. By defining two real fields

α and β of the CshG model through ψ ≡ sinh (α/2) exp(iβ/2) , the Lagrangian (A.7) is

rewritten as

LCshG =
1

4
(∂aα)2 +

tanh2(α/2)

4
(∂aβ)2 + sinh2(α/2) . (A.8)

The equations of motion that follow from the Lagrangian are

∂ a∂aψ − ψ∗ ∂ aψ ∂aψ

1 + ψ∗ψ
− ψ (1 + ψ∗ψ) = 0 , (A.9)

i.e.,





∂ a∂aα − sinh(α/2)

2 cosh3(α/2)
(∂aβ)2 − sinhα = 0 ,

∂ a∂aβ +
2 ∂aα ∂ aβ

sinhα
= 0 .

(A.10)

We refer to the coupled equations (A.10) as Complex sinh-Gordon (CshG) equations. If β

is a constant field, the first equation in (A.10) reduces to

∂a∂
aα − sinhα = 0 , (A.11)

which is the ordinary sinh-Gordon equation. As readers familiar with the PLR reduc-

tion can easily imagine, it is this field α that gets into a self-consistent potential in the

Schrödinger equation this time. Namely, we can write the string equations of motion given

in (A.4) as

∂a∂
a~η − (cosh α) ~η = 0 , cosh α ≡ ∂a~η

∗ · ∂ a~η , (A.12)

with the same field α we introduced as the real part of the CshG field ψ . What this means

is that if {~η , ξ} is a consistent string solution which satisfies Virasoro conditions (A.5)

and (A.6), then ψ = sinh (α/2) exp(iβ/2) defined via (A.12) and (A.16) solves the CshG

equations.

The derivation of this fact parallels the usual PLR reduction procedure. Let us define

worldsheet light-cone coordinates as σ± = τ ± σ , and the embedding coordinates as η0 =

Y0 + iY5 and η1 = Y1 + iY2 . Then consider the equations of motion of the O(2, 2) nonlinear

sigma model through the constraints

~Y · ~Y = −1 , (∂+
~Y )2 = −1 , (∂−~Y )2 = −1 , ∂+

~Y · ∂−~Y ≡ − cosh α , (A.13)

where ~Y · ~Y ≡ (~Y )2 ≡ −(Y0)
2 + (Y1)

2 + (Y2)
2 − (Y5)

2 . A basis of O(2, 2)-covariant vectors

can be given by Yi , ∂+Yi , ∂−Yi and Ki ≡ ǫijklY
j∂+Y k∂−Y l . By defining a pair of scalar
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functions u and v as

u ≡
~K · ∂ 2

+
~Y

sinhα
, v ≡

~K · ∂ 2
−~Y

sinhα
, (A.14)

the equations of motion of the O(2, 2) sigma model are recast in the form

∂−∂+α + sinhα +
uv

sinhα
= 0 , ∂−u =

v ∂+α

sinhα
, ∂+v =

u∂−α

sinhα
. (A.15)

One can easily confirm that this set of equations is equivalent to the pair of equations (A.10)

of CshG theory, under the identifications

u = (∂+β) tanh
α

2
, v = −(∂−β) tanh

α

2
. (A.16)

Thus there is a (classical) equivalence between the O(2, 2) sigma model ↔ CshG as in

the O(4) ↔ CsG case. Making use of the equivalence, one can construct classical string

solutions on AdS3 × S1 by the following recipe:

1. Find a solution ψ of CshG equation (A.9).

2. Identify cosh α ≡ ∂a~η
∗ ·∂ a~η , where α appears in the real part of the solution ψ , and

η are the embedding coordinates of the corresponding string solution in AdS3 .

3. Solve the “Schrödinger equation” (A.12) together with the Virasoro constraints (A.5)

and (A.6), under appropriate boundary conditions.

4. Resulting set of ~η (“wavefunction”) and ξ1 gives the corresponding string profile in

AdS3 × S1 .

Let us start with step 1. From the similarities between the CshG equation and the

CsG equation, it is easy to find helical-wave solutions of the CshG equation. Here we give

two such solutions that will be important later. The first one is given by

ψcd = kc
cn(cxv)

dn(cxv)
exp

(
i
√

(1 + c2)(1 + k2c2) tv

)
, (A.17)

and the second one is

ψds = c
dn(cxv)

sn(cxv)
exp

(
i
√

(1 − k2c2)(1 + c2 − k2c2) tv

)
. (A.18)

By substituting the solution (A.18) into the string equations of motion (A.12), we obtain
[
−∂2

T + ∂2
X − k2

(
2

k2 sn2(X, k)
− 1

)]
~η = U~η , (A.19)

under the identification of (µτ, µσ) ≡ (ct, cx) . The “eigenenergy” U can be treated as a

free parameter as was the case in [28]. Different choices of helical-waves of CshG equation

simply correspond to taking different ranges of U .

We are now at the stage of constructing the corresponding string solution by following

the steps 2 - 4 listed before. However, we do not need to do this literally. Since the metrics

of AdS3 × S1

ds2
AdS3×S1 = − cosh2ρ̃ dt̃ 2 + dρ̃2 + sinh2ρ̃ dφ̃2

1 + dϕ̃2
1 , (A.20)
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and of R × S3

ds2
R×S3 = −dt2 + dγ2 + cos2γ dϕ2

1 + sin2γ dϕ2
2 , (A.21)

are related by analytic continuation

ρ̃ ↔ iγ, t̃ ↔ ϕ1, φ̃1 ↔ ϕ2, ϕ̃1 ↔ t =⇒ ds2
AdS3×S1 ↔ −ds2

R×S3 , (A.22)

string solutions on both manifolds are related by a sort of analytic continuation of global

coordinates. Therefore, the simplest way to obtain helical string solutions on AdS3 × S1

is to perform analytic continuation of helical string solutions on R × S3, as will be done

in the following sections. Large parts of the calculation parallel the R × S3 case. The

most significant difference lies in the constraints imposed on the solution of the equations

of motion, such as the periodicity conditions.

A.2 Helical strings on AdS3 × S1 with two spins

In this section, we consider the analytic continuation of helical strings on R × S3 to those

on AdS3 × S1. Among various possible solutions, we will concentrate on two particular

examples that have clear connections with known string solutions of interest to us. The

first example, called type (iii) helical string, is a helical generalization of the folded string

solution on AdS3 × S1 [56]. The second one, called type (iv), reproduces the SL(2) “giant

magnon” solution [21, 29] in the infinite-spin limit.

A.2.1 Type (iii) helical strings

In [57], it was pointed out that (S, J) folded strings can be obtained from (J1, J2) folded

strings by analytic continuation of the elliptic modulus squared, from k2 ≥ 0 to k2 ≤ 0 .

Here we apply the same analytic continuation to type (i) helical strings to obtain solutions

on AdS3 × S1, which we call type (iii) strings. For notational simplicity, it is useful to

introduce a new moduli parameter q through the relation

k ≡ iq

q′
≡ iq√

1 − q2
. (A.23)

If k is located on the upper half of the imaginary axis, i.e., k = iκ with 0 ≤ κ , then q is a

real parameter in the interval [0, 1] .

As shown in appendix B, the transformation (A.23) can be regarded as a T-

transformation of the modulus τ . Hence, by performing a T-transformation on the profile

of type (i) helical strings (3.1)-(3.3), we obtain type (iii) string solutions:

η0 =
C√
qq′

Θ3(0)Θ0(X̃ − iω̃0)

Θ2(iω̃0)Θ3(X̃)
exp

(
Z2(iω̃0)X̃ + iũ0 T̃

)
, (A.24)

η1 =
C√
qq′

Θ3(0)Θ1(X̃ − iω̃1)

Θ3(iω̃1)Θ3(X̃)
exp

(
Z3(iω̃1)X̃ + iũ1 T̃

)
, (A.25)

ξ1 = exp
(
iãT̃ + ib̃X̃

)
, (A.26)
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Figure 8: Type (iii) helical string (q = 0.700 , U = 12.0 , ω̃0 = −0.505 , ω̃1 = 0.776 , n = 6),

projected onto AdS2 spanned by (Re η1, Im η1, |η0|) . The circle represents a unit circle |η1| = 1 at

η0 = 0 .

where we rescaled various parameters as

X̃ = X/q′ , T̃ = T/q′ , ω̃j = ωj/q
′ , ã = aq′ , b̃ = bq′ , ũj = uj q

′ . (A.27)

We choose the constant C so that they satisfy |η0|2 − |η1|2 = 1 . One such possibility is to

choose21

C =

(
1

q2 cn2(iω̃0)
+

sn2(iω̃1)

dn2(iω̃1)

)−1/2

. (A.28)

With the help of various formulae on elliptic functions, one can check that ~η

in (A.24), (A.25) certainly solves the string equations of motion as

[
−∂2

T̃
+ ∂2

X̃
+ q2

(
2(1 − q2)

sn2

dn2 (X̃, q) − 1

)]
~η = Ũ~η , (A.29)

if the parameters are related as

ũ2
0 = Ũ − (1 − q2)

sn2(iω̃0)

cn2(iω̃0)
, ũ2

1 = Ũ +
1 − q2

dn2(iω̃1)
. (A.30)

As is clear from (A.29), the type (iii) solution is related to the helical-wave solution of

the CshG equation given in (A.17). The Virasoro constraints (A.5) and (A.6) impose

constraints on ã and b̃ in (A.26):22

ã2 + b̃2 = −q2 − Ũ − 2(1 − q2)

cn2(iω0)
+ 2ũ2

1 , (A.31)

ã b̃ = i C2

(
ũ0

q2

sn(iω0) dn(iω0)

cn3(iω0)
+ ũ1

sn(iω1) cn(iω1)

dn3(iω1)

)
. (A.32)

21In contrast to the R × S3 case, the r.h.s. of (A.28) is not always real for arbitrary real values of ω̃0 and

ω̃1 . If C2 < 0, we have to interchange η0 and η1 to obtain a solution properly normalized on AdS3.
22Note that the Virasoro constraints require neither a ≥ b nor a ≤ b . This means that both ξ1 =

exp
`

iã0T̃ + ib̃0X̃
´

and exp
`

ib̃0T̃ + iã0X̃
´

are consistent string solutions. It can be viewed as the τ ↔ σ

transformation applied only to the S1 ⊂ S5 part while leaving the AdS3 part intact.
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The reality of ã and b̃ must also hold.

Since we are interested in closed string solutions, we should impose periodic boundary

conditions. Let us define the period in the σ direction by

∆σ =
2K(k)

√
1 − v2

µ
=

2q′ K(q)
√

1 − v2

µ
≡ 2l ≡ 2π

n
, (A.33)

which is equivalent to ∆X̃ = 2K(q) and ∆T̃ = −2vK(q). The periodicity conditions for

the AdS variables are written as

∆t = 2K(q) {−iZ2(iω̃0) − vũ0} + 2n′
timeπ ≡ 2πNt

n
, (A.34)

∆φ1 = 2K(q) {−iZ3(iω̃1) − vũ1} +
(
2n′

1 + 1
)
π ≡ 2πNφ1

n
. (A.35)

And from the periodicity in ϕ1 direction, we have

Nϕ1
= µ

b̃ − vã√
1 − v2

∈ Z . (A.36)

We must further require the timelike winding Nt to be zero. Just as in the R×S3 case,

one can adjust the value of v to fulfill this requirement.23 The integer n′
time is evaluated as

2n′
timeπ =

1

2i

∫
K

−K

dX̃
∂

∂X̃

[
log

(
Θ0(X̃ − iω̃0)

Θ0(X̃ + iω̃0)

)]
. (A.37)

Then, by solving the equation Nt = 0 , one finds an appropriate value of v = vt. The

absolute value of the worldsheet boost parameter vt may possibly exceed one (the speed of

light). In such cases, we have to perform the 2D transformation τ ↔ σ on the AdS space

to get vt 7→ −1/vt .

As usual, conserved charges are defined by

E ≡
√

λ

π
E =

n
√

λ

2π

∫ l

−l
dσ Im (η∗0 ∂τη0) , (A.38)

S ≡
√

λ

π
S =

n
√

λ

2π

∫ l

−l
dσ Im (η∗1 ∂τη1) , (A.39)

J ≡
√

λ

π
J =

n
√

λ

2π

∫ l

−l
dσ Im (ξ∗1 ∂τξ1) . (A.40)

which are evaluated as, for the current type (iii) case,

E =
nC2 ũ0

q2(1 − q2)

[
E + (1 − q2)

{
sn2(iω̃0)

cn2(iω̃0)
− iv

ũ0

sn(iω̃0) dn(iω̃0)

cn3(iω̃0)

}
K

]
, (A.41)

S =
nC2 ũ1

q2(1 − q2)

[
E− (1 − q2)

{
1

dn2(iω̃1)
− ivq2

ũ1

sn(iω̃1) cn(iω̃1)

dn3(iω̃1)

}
K

]
, (A.42)

J = n
(
ã − v b̃

)
K . (A.43)

23Note in R × S3 case, the vanishing-Nt condition was trivially solved by v = b/a .
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Figure 9: ω̃1,2 → 0 limit of type (iii) helical string becomes a folded string studied in [56].

It is interesting to see some of the limiting behaviors of this type (iii) helical string in

detail.24

ω̃1,2 → 0 limit: folded strings on AdS3 × S1. In the ω̃1,2 → 0 the timelike winding

condition (A.34) requires v = 0 , so the boosted worldsheet coordinates (T̃ , X̃) become

(T̃ , X̃) →
(

µτ

q′
,
µσ

q′

)
≡ (µ̃τ, µ̃σ) ≡ (τ̃ , σ̃) . (A.44)

The periodicity condition (A.33) allows µ̃ to take only a discrete set of values.

The profile of type (iii) strings now reduces to

η0 =
1

dn(σ̃, q)
eiũ0τ̃ , η1 =

q sn(σ̃, q)

dn(σ̃, q)
eiũ1τ̃ , ξ1 = exp

(
i

√
Ũ − q2 τ̃

)
, (A.45)

where ũ2
0 = Ũ and ũ2

1 = Ũ + 1 − q2 . This solution is equivalent to T-transformation

of (J1, J2) folded strings of [30], namely, (S, J) folded strings.25 The conserved charges

of (A.45) are computed as

E =
nũ0

1 − q2
E(q) , S =

nũ1

1 − q2

(
E(q) − (1 − q2)K(q)

)
, J = n

√
Ũ − q2 K(q) . (A.46)

Rewriting these expressions in terms of the original imaginary modulus k , we find the

following relations among conserved charges :

( J
K(k)

)2

−
( E

E(k)

)2

= n2k2 ,

( S
K(k) −E(k)

)2

−
( J

K(k)

)2

= n2(1 − k2) , (A.47)

as obtained in [57].

24It seems the original “spiky string” solution of [58] is also contained in the type (iii) class, although we

have not been able to reproduce it analytically.

25Note the set, η0,1 = the same as (A.45) and ξ1 = exp[i

q

Ũ − q2 σ̃] , also gives a solution.

– 33 –



J
H
E
P
1
1
(
2
0
0
7
)
0
3
3

q → 1 limit: logarithmic behavior. Another interesting limit is to send the elliptic

modulus q to unity. In this limit, the spikes of the type (iii) string attach to the AdS

boundary, and the energy E and AdS spin S become divergent. Again, the condition of

vanishing timelike winding is fulfilled by v = 0, and the periodicity condition (A.33) implies

that µ̃ given in (A.44) goes to infinity. The profile becomes

η0 = C cosh(σ̃−iω̃0) eiũ0τ̃ , η1 = C sinh(σ̃−iω̃1) eiũ1τ̃ , ξ1 = exp
(
iã τ̃ + ib̃ σ̃

)
, (A.48)

where

C =
(
cos2 ω̃1 − sin2 ω̃0

)−1/2
, ũ2

0 = ũ2
1 = Ũ . (A.49)

The constants ã and b̃ satisfy the constraints

ã2 + b̃2 = −1 + Ũ , ã b̃ = C2 (ũ0 sin ω̃0 cos ω̃0 + ũ1 sin ω̃1 cos ω̃1) . (A.50)

The conserved charges are computed as

E = nC2 ũ0

(
Λ−sin2 ω̃0 K(1)

)
, S = nC2 ũ1

(
Λ−cos2 ω̃1 K(1)

)
, J = nãK(1) , (A.51)

where we defined a cut-off Λ ≡ 1/(1 − q2) .

Let us pay special attention to the ũ0 = ũ1 =
√

Ũ case. For this case the energy-spin

relation reads

E − S = n
√

Ũ K(1) . (A.52)

Obviously the r.h.s. is divergent, and careful examination reveals it is logarithmic in S .

This can be seen by first noticing, on one hand, that the complete elliptic integral of the

first kind K(q) ≡ K(e−r) has asymptotic behavior

K(e−r) = −1

2
ln

(r

8

)
+ O(r ln r) , (A.53)

while on the other, the degree of divergence for Λ is

Λ =
1

1 − q2
=

1

1 − e−2r
∼ 1

2r
, (as r → 0) . (A.54)

Since the most divergent part of S is governed by Λ rather than K(1) , it follows that

K(e−r) ∼ K(1 − r) ∼ −1

2
ln

(
nC2 ũ1

16S

)
, (as r → 0) , (A.55)

at the leading order. Then it follows that

E − S ∼ −n
√

Ũ

2
ln

(
16S

nC2 ũ1

)
, (as r → 0) , (A.56)

as promised.

Let us consider the particular case Ũ = 1, which is equivalent to ã = b̃ = 0 and

ω̃0 = −ω̃1 . The above dispersion relation (A.56) now reduces to

E − S =
n
√

λ

2π
ln S , (A.57)
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omitting the finite part. This result was first obtained in [42] for the n = 2 case, and

generalised to generic n case in [58].

One can also reproduce the double logarithm behavior of [56] (see also [57, 59 – 61]).

To see this, let us set b̃ = 0 and ã =
√

Ũ − 1 , and rewrite the relation (A.52) as

E − S =
√

J 2 + n2 K(1)2 ∼
[
J 2 +

n2

4
ln2

(
2S

nC2
√

Ũ

)]1/2

. (A.58)

There are two limits of special interest. The “slow long string” limit of [60], is reached by√
U ≪ λ , so that in the strong coupling regime λ ≫ 1 the r.h.s. of (A.58) becomes

E − S ∼
√

J 2 +
n2

4
ln2 S . (A.59)

Similarly, the “fast long string” of [60] is obtained by taking
√

U ∼ λ ≫ 1 , resulting in

E − S ∼
[
J 2 +

n2

4

(
ln

( S
J

)
+ ln (ln r)

)2
]1/2

∼
√

J 2 +
n2

4
ln2

( S
J

)
, (A.60)

where we neglected a term ln (ln r) which is relatively less divergent in the limit r → 0 .

A.2.2 Type (iv) helical strings

Let us finally present another AdS helical solution which incorporates the SL(2) “(dyonic)

giant magnon” of [21, 29]. This solution, which we call the type (iv) string, is obtained by

applying a shift X → X + iK′(k) to the type (i) helical string. Its profile is given by

η0 =
C√
k

Θ0(0)Θ0(X − iω0)

Θ0(iω0)Θ1(X)
exp

(
Z0(iω0)X + iu0T

)
, (A.61)

η1 =
C√
k

Θ0(0)Θ3(X − iω1)

Θ2(iω1)Θ1(X)
exp

(
Z3(iω1)X + iu1T

)
, (A.62)

ξ1 = exp (iaT + ibX) . (A.63)

We omit displaying all the constraints among the parameters (they can be obtained in

a similar manner as in the type (i) case). The type (iv) solution corresponds to the

helical-wave solution given in (A.18), and satisfy the string equations of motion of the

form (A.19).26

k → 1 limit: SL(2) “dyonic giant magnon”. The SL(2) “dyonic giant magnon” is

reproduced in the limit k → 1 , as

η0 =
cosh(X − iω0)

sinhX
ei(tan ω0)X+iu0T , η1 =

cos ω0

sinhX
eiu1T , ξ1 = eâT+ib̂X , (A.64)

where

u2
0 = u2

1 +
1

cos2 ω0
, (â, b̂) = (u1, tan ω0) or (tan ω0, u1) . (A.65)

26This can be easily checked by using a relation 1/k2 sn2(x, k) = sn2 (x + iK′(k), k) .

– 35 –



J
H
E
P
1
1
(
2
0
0
7
)
0
3
3

Figure 10: k → 1 limit of type (iv) helical string (ω0 = 0.785 , u0 = 1.41 , u1 = 0) : “giant

magnon” solution in AdS space.

Due to the non-compactness of AdS space, the conserved charges are divergent. This is

a UV divergence, and we regularise it by the following prescription. First change the

integration range for the charges (see (A.38) - (A.40)) from
∫ 2l
0 dσ to

∫ 2l−ǫ
ǫ dσ , with ǫ > 0 ,

to obtain

E = u0 cos2 ω0

(
ǫ−1 − 1

)
+ K(1)(u0 − v tan ω0) , (A.66)

S = u1 cos2 ω0

(
ǫ−1 − 1

)
, (A.67)

J = K(1)(u0 − v tan ω0) , (A.68)

then drop the terms proportional to ǫ−1 by hand. This prescription yields a regularised

energy and an S5 spin which are still IR divergent due to the non-compactness of the

worldsheet. However, their difference becomes finite, leading to the energy-spin relation

(E − J )reg = −
√

(S)2reg + cos2 ω0 . (A.69)

Note that in view of the AdS/CFT correspondence, E −J must be positive, which in turn

implies (E − J )reg is negative.

Let us take v = tan ω0/u0 in (A.64), and consider a rotating frame ηnew
0 = e−iτ̃η0 ≡

Ỹ0 + iỸ5 . We then find Ỹ5 = −i sin ω0 is independent of τ̃ and σ̃ , showing that the

“shadow” of the SL(2) “dyonic giant magnon” projected onto the Ỹ0-Ỹ5 plane is just given

by two semi-infinite straight lines on the same line. Namely, the shadow is obtained by

removing a finite segment from an infinitely long line, where the two endpoints of the

segment are on the unit circle |η0| = 1 with angular difference ∆t = π − 2ω0 . Figure 10

shows the snapshot of the SL(2) “dyonic giant magnon”, projected onto the plane spanned

by (Re η0, Im η0, |η1|) .

It is interesting to compare this situation with the usual giant magnon on R × S3 . In

the sphere case, the “shadow” of the giant magnon is just a straight line segment connecting

two endpoints on the equatorial circle |ξ1| = 1 . So the “shadows” of SU(2) and SL(2) giant

magnons are just complementary. Using this picture of “shadows on the LLM plane”, one

can further discuss the “scattering” of two SL(2) “(dyonic) giant magnons” in the similar

manner as in the SU(2) case.
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These “shadow” pictures remind us of the corresponding finite-gap representations of

both solutions, resulting from the SU(2) and SL(2) spin-chain analyses. While in the SU(2)

case, a condensate cut, or a Bethe string, has finite length in the imaginary direction of

the complex spectral parameter plane, for the SL(2) case, they are given by two semi-

infinite lines in the same imaginary direction [21]. This complementary feature reflects the

structural symmetry between the BDS parts of S-matrices, SSU(2) = S−1
SL(2) .

These “shadow” pictures also show up in matrix model context [24 – 27]. In a reduced

matrix quantum mechanics setup obtained from N = 4 SYM on R×S3 , a “string-bit” con-

necting eigenvalues of background matrices forming 1
2 -BPS circular droplet can be viewed

as the shadow of the corresponding string. For the SU(2) sector, it is true even for the

boundstate (bound “string-bits”) case [26]. It would be interesting to investigate the SL(2)

case along similar lines of thoughts.

B. Useful formulae

This appendix provides some formulae useful for computation involving Jacobi elliptic

functions and elliptic integrals.

B.1 Elliptic functions and elliptic integrals near k = 1

The behavior of Jacobi elliptic functions around k = 1 is discussed below.27 We follow the

method of [62], where they computed asymptotics around k = 0 .

Jacobi sn, cn and dn functions. The Jacobi sn function obeys an equation

u =

∫ sn(u,k)

0

dt√
1 − t2

√
1 − k2t2

. (B.1)

Differentiating both sides with respect to k , one finds

∂ sn(u, k)

∂k
= − cn(u, k) dn(u, k)

∫ sn(u,k)

0

kt2 dt√
1 − t2 (1 − k2t2)3/2

. (B.2)

Taking the limit k → 1 and substituting u = iω , we obtain

∂ sn(u, k)

∂k

∣∣∣∣
k→1

=
i (ω − sinω cos ω)

2 cos2 ω
, (B.3)

which is the first term in the expansion of the Jacobi sn function around k = 1 .

The asymptotics of the Jacobi cn and dn functions can be determined by the relations

sn2(u, k) + cn2(u, k) = 1, dn2(u, k) + k2 sn2(u, k) = 1 . (B.4)

27We make the elliptic moduli explicit in this section, and use the same conventions as [28].
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Jacobi zeta function. The Jacobi zeta function behaves around k = 1 as

Z0(u, k = e−r) = tanh u +
z2(u)

ln r
+ rz1(u) + . . . . (B.5)

The functions z1(u) and z2(u) can be determined in the following way. The third term,

z1(u) , is calculated by the formula [63]:

lim
k→1

K(k) (Z0(u, k) − tanhu) = −u , (B.6)

while the second term, z2(u) , can be determined by the relations

∂Z0(u, k)

∂u
= dn2(u, k) − E(k)

K(k)
, (B.7)

and

Z0(u + v, k) − Z0(u, k) − Z0(v, k) = −k2 sn(u, k) sn(v, k) sn(u + v, k) . (B.8)

Complete elliptic integrals. For actual use of the relations (B.6) and (B.7), we need

to know the asymptotics of complete ellitpic integrals. They are given by

K(e−r) = −1

2
ln r +

3

2
ln 2 − 1

4
r ln r + o(r lnm r) , (B.9)

E(e−r) = 1 − 1

2
r ln r + o(r lnm r) , (B.10)

with m > 1 . Changing the elliptic modulus from k to e−r , the asymptotic behavior of

elliptic functions around r = 0 are given by

sn(iω, e−r) = i tan ω − ir
ω − sin ω cos ω

2 cos2 ω
+ O(r2) , (B.11)

cn(iω, e−r) =
1

cos ω
− r

ω sin ω − sin2 ω cos ω

2 cos2 ω
+ O(r2) , (B.12)

dn(iω, e−r) =
1

cos ω
− r

ω sin ω + sin2 ω cos ω

2 cos2 ω
+ O(r2) , (B.13)

Z0(iω, e−r) = i tan ω − ir
ω + sin ω cos ω

2 cos2 ω
+

2iω

ln r
+ O(r2) . (B.14)

B.2 Moduli transformations

We collect some formulae for SL(2, Z) transformations acting on elliptic functions.

Elliptic theta functions transform under the T-transformation as

ϑ0(z|τ + 1) = ϑ3(z|τ) , ϑ1(z|τ + 1) = eπi/4 ϑ1(z|τ) , (B.15)

ϑ2(z|τ + 1) = eπi/4 ϑ2(z|τ) , ϑ3(z|τ + 1) = ϑ0(z|τ) , (B.16)

and complete elliptic integrals with q ≥ 0 transform as

K(q) = k′K(k) , K′(q) = k′ (K′(k) − iK(k)
)

, E(q) = E(k)/k′ . (B.17)
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Jacobian theta functions, defined by

Θν(z, k) ≡ ϑν

(
z

2K(k)
, τ =

iK′(k)

K(k)

)
, (ν = 0, 1, 2, 3) (B.18)

transform as

Θ0(z|τ + 1) = Θ3(z/k′|τ) , Θ1(z|τ + 1) = eπi/4 Θ1(z/k′|τ) , (B.19)

Θ2(z|τ + 1) = eπi/4 Θ2(z/k′|τ) , Θ3(z|τ + 1) = Θ0(z/k′|τ) , (B.20)

and Jacobian zeta functions defined by Zν(z, k) ≡ ∂z ln Θν(z, k) transform as

Z0(z|τ + 1) = Z3(z/k′|τ)/k′ , Z1(z|τ + 1) = Z1(z/k′|τ)/k′ , (B.21)

Z2(z|τ + 1) = Z2(z/k′|τ)/k′ , Z3(z|τ + 1) = Z0(z/k′|τ)/k′ . (B.22)

Therefore, the T-transformation acts on the elliptic modulus k as

q ≡
(

Θ2(0|τ + 1)

Θ3(0|τ + 1)

)2

= i

(
Θ2(0|τ)

Θ0(0|τ)

)2

=
ik

k′ , (B.23)

q′ ≡
(

Θ0(0|τ + 1)

Θ3(0|τ + 1)

)2

=

(
Θ3(0|τ)

Θ0(0|τ)

)2

=
1

k′ . (B.24)

In terms of the modulus q defined in (A.23), the Jacobian sn, cn and dn functions are

written as

sn(z, q) = k′ sn(z/k′, k)

dn(z/k′, k)
,

cn(z, q) =
cn(z/k′, k)

dn(z/k′, k)
, (B.25)

dn(z, q) =
1

dn(z/k′, k)
.
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